BioEnergy Options & Opportunities in Arkansas

February 2012

Jim Wimberly
BioEnergy Systems LLC
Fayetteville, AR
www.biomass2.com

Presentation overview

- Overview of biomass energy
 - > Bioenergy basics
 - > Potential benefits to Arkansas
 - > Key terminology
- Potential bioenergy enterprises of particular interest to Arkansas
 - > Biorefineries
 - > Biopower
 - Co-firing
 - CHP
 - > Combined-Heat-and-Char

Bioenergy basics

- Bioenergy is a form of solar energy
 - > Atmospheric carbon converted to plant mass via photosynthesis
 - > Plants are essentially solar batteries
- · A variety of biomass-derived products
 - > Liquid transportation fuels
 - > Electricity
 - > Thermal energy
 - · Space heating
 - Steam (process heat)
 - > Intermediate energy products
 - Pellets
 - > High-value non-energy co-products
 - · E.g., biobased polymers for plastics manufacturing

Bioenergy can be good for Arkansas

- Significant investment opportunities
 - > Example: 5 commercial-scale enterprises... ~\$2 billion capital cost
- Significant potential energy contributions
 - > 100's of millions of gallons of biofuels per year
 - > 100's of megawatts of power
- Significant economic benefits to the State
 - > 1000's of jobs
 - · Feedstock production, harvesting, & transport
 - · Operations of biorefineries and biopower facilities
 - > Home-grown fuel
 - · Reduced import of coal & refined liquid fuels from other states
 - > Economic benefits to existing industries
 - · Forest products
 - · Agriculture

But, bioenergy is not easy...

- Numerous logistical challenges
 - > Biomass feedstock supply chains are complicated
- The economics are, generally, not attractive...
 - > Biofuels cannot currently compete with petro-derived fuels
 - Without support programs such as the RFS2
 - > Biopower cannot currently compete with power from coal or NG
 - > But, current conditions are expected to change
 - And we should move forward <u>now</u> with these energy options
 - > Public policies are critical
 - · and several federal support programs already exist
- In order to pursue commercial-scale deployment...
 - We need to understand the <u>details</u> of bioenergy options and opportunities in order to make informed decisions about public policies that stimulate (or constrain) commercial deployment

Under current economic conditions

Bioenergy terminology

- Feedstocks
 - > Plant- or animal-derived material
 - · converted in value-added products
 - > Examples
 - · Woody biomass
 - √ In-forest residues (IFR)
 - · Ag field residues
 - Dedicated energy crops
 - · Chicken litter
 - > Biomass feedstock supply chain
 - · All of the activities associated with delivery of biomass
 - √ Crop establishment
 - √ Production & harvesting
 - √ Storage & transportation
 - √ Pre-processing

Bioenergy terminology

- Biofuels
 - > Liquid transportation fuels made from biomass
 - > Examples:
 - Drop-in fuels -

including molecularly-equivalent gasoline, diesel, and jet fuel products that can be used within

Cellulosic ethanol

existing fuel handling and distribution systems

- · Renewable diesel
 - $\sqrt{\ }$ This is different from oil-derived biodiesel
- · First generation biofuels
 - √ Corn-derived ethanol
 - √ Soy-derived biodiesel

It is unlikely that any new commercialscale operations will be established for these 1st-gen fuels

- > Produced at a biorefinery
- > Facility size typically measured in millions of gallons per year (MGY)
 - Average cellulosic biorefinery size = 40 MGY

Bioenergy terminology

- Biopower
 - > Electricity from biomass
 - Biopower facilities are more suitable for base-load (like coal)
 - > Types of biopower facilities
 - Stand-alone powerplant
 - √ A dedicated biomass-to-electricity generating facility
 - Co-firing
 - $\sqrt{}$ Biomass fuel is used to displace a fraction of coal
 - CHP
 - √ "Combined heat and power"
 - √ Co-generation ("co-gen")
 - » Thermal energy + electricity

most large forest products manufacturing facilities in Arkansas already have a CHP system

Bioenergy terminology

- Biopower basics
 - > 1 Megawatt (MW) = 1,000,000 watts
 - > 1 Megawatt-hour (MWh) = 1 megawatt for 1 hour
 - > Capacity Factor (CF) = % of the year a facility generates full power
- Conversion technologies
 - > Platforms (pathways)
 - Biochemical
 - √ Fermentation
 - √ Anaerobic digestion
 - Thermochemical
 - √ Combustion
 - √ Gasification
 - √ Pyrolysis

Areas of specific interest for Arkansas

- Biorefineries
- Biopower
 - > Co-firing
 - > CHP
- Integrated facilities
 - > Biorefinery
 - > Biopower
 - > Thermal energy
 - > High-value bio-based non-energy products
- Combined-Heat-and-Char
 - > For broiler and turkey farms

Biorefineries

assuming at least half will be established as expanded operations of existing corn-ethanol facilities located in the midwest (using corn stover as the cellulosic feedstock)

- 21 BGY ... that's at least 200 new biorefineries
 - > That's an average of 4 per state
 - > But, given Arkansas' resource base, we should be above average
 - · So, how many should we plan for?
- One biorefinery...
 - > Imagine a hybrid paper mill and small oil refinery
 - > Biomass feedstocks needed
 - ~500,000 dry tons / year
 - On average, ~2/3rds will come from dedicated energy crops $_{\sqrt{}}$ The balance from woody/ag residues
 - > Capital cost: ~\$270,000,000
 - > Revenues from product sales: ~\$120,000,000 per year
 - > Jobs created: ~960 (direct) for 30 years

Biorefineries...how might we pursue for AR?

- We're competing with every neighboring state
 - » Biorefineries have been initiated in MO, TN, MS, LA, TX, OK, & KS
- Project developers seek to reduce project risks
 - > They need to reduce uncertainties re feedstock supply chains
 - · AR needs an updated biomass resource assessment
 - · The research community needs help addressing key issues
 - > They cannot move forward with project financing
 - · How can we help them secure project financing?
 - > They need to know who to contact within the State
 - More coordination between state agencies and private sector
- A new report from Winrock will shed more light on the economics of a hypothetical biorefinery in northeast AR
 - > Due out by early March

Biopower

- Types of biopower facilities
 - > Stand-alone powerplant
 - · A dedicated biomass-to-electricity generating facility
 - Co-firing
 - · Biomass fuel is used to displace a fraction of coal
 - · Maintain same capacity and power generation
 - > CHP
 - · "Combined heat and power"
 - Co-generation ("co-gen")

√ Thermal energy + electricity

let's have a closer look at co-firing

We can also envision integrated biorefineries, including CHP

Co-firing

- There are currently 4 coal-fired powerplants in Arkansas...
 - > Total installed capacity = 4,600 MW
 - > Typical capacity factor (CF) = 83%
 - > 4,600 MW x 8760 hours/year x 83% = 33,500,000 MWh/yr
 - > ~ 1,200 train loads of coal per year
- Let's look at a 2% biomass co-firing rate at all 4 facilities...
 - > Equates to ~100 MW of biopower
 - > Requiring ~750,000 tons/year of biomass
 - > Displace ~25 train-loads per year with home-grown fuel
 - > Value of home-grown fuel: ~\$35,000,000
 - > Job creation: ~200 (direct) for 30 years

But we need details re co-firing options

- Co-firing capabilities are specific to each site
 - > The ability to co-fire will vary from one powerplant to another
- An assessment is needed for each of the 4 sites
 - > Evaluate the technical options
 - What co-firing levels could that particular boiler accommodate?
 - What are the on-site logistics & other technical considerations?
 - > Evaluate the potential feedstock supplies
 - What types of feedstocks would be available for that site?
 - How might a feedstock supply chain be established for that site?
 - > Evaluate the potential economics
 - · Capital costs
 - Operating costs
 - Potential rate impacts (at various target co-firing levels)
 - > Determine potential job creation

Co-firing...how might we pursue for AR?

- Undertake assessments to determine co-firing options
- Coordinate between the key parties, e.g.:
 - > At the state level: AAEC, AEDC, APSC, ADEQ
 - > With the various utilities that own/operate the generating facilities
- Consider a pilot renewable power program
 - > RPS = Renewable Portfolio Standard
 - A state-level program requiring a fixed % of all electricity to be generated from renewables
 - 33 states already have some type of RPS in place and several others are considering an RPS or a pilot program approach
 - > Look at what has recently been done in LA and other nearby states

Combined-heat-and-char

- Use chicken litter as fuel
 - > Generate thermal energy to displace propane for space heating
 - > Also produce biochar, a valuable byproduct
 - > Farm-based renewable energy systems
 - > After 20 years of R&D, the technology is now available
- Multiple benefits
 - > Economic benefits to broiler producers
 - > Economic benefits from Arkansas-based manufacturing
 - > Water quality benefits (from avoided land application of litter)
 - > Displacement of fossil fuels with renewable biomass
- What's needed to move this forward?
 - > Support for a full-scale on-farm test & demonstration
 - > Support (to UA) for evaluations of using biochar
 - · Essential for development of biochar markets

In summary

- There are several commercial-scale bioenergy opportunities
 - > Biorefineries particularly for drop-in fuels
 - > Biopower via co-firing
 - > Integrated biorefinery and CHP operation
 - > Combined-heat-and-char
- * Actions needed
 - > Expanded efforts to attract bioenergy projects
 - Including a pilot RPS program
 - · Including an updated statewide feedstock assessment
 - > Assessments of co-firing potential at AR's 4 coal-fired powerplants
 - > Support for farm-scale litter-to-heat-and-char systems

Jim Wimberly
BioEnergy Systems LLC
Fayetteville, AR
wimberly@biomass2.com
www.biomass2.com
501.527.0478

